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Abstract 

Reconstruction of particles that traverse an environment of large number of radi- 
ation lengths (X,) is subjected to a substantial loss of information due to Multiple 
Colulomb Scattering (MS). The stochastic nature of the process makes it difficult to 
propagate local errors across the scattering material. A random walk (RW) approach 
to the calculation of the MS errors of the track parameters is described for such an 
environment. The simulated RW solution yields an estimate of the full end-to-end 
error matrix. 

In a previous paper [l] we treated the errors due to MS in the framework of local tracking. Let 
us recall the main features of this approach. The particle trajectory traversing the material 
in the detector is broken into a series of semi straight lines. The local error variance and 
covariance of the track parameters are parameterieed in terms of the scattering angle 0”” [Z]. 
The calculated error matrix is then propagated by the track model matrix across the detector. 
However, estimation of the MS error matrix in an environment that comprise a large number 
of scatterers impose extra difficulties. As will be shown below, the estimation of errors in 
such an environment involves non trivial integrations over correlated track parameters in 
their entire phase space. 

It is not very unusual in high energy physics detectors that a particle traverses dense 
material before its position (and thus direction) is directly measured (inferred). For example, 
consider the muon system in the DO detector 131; where a magnetized iron toroid of circa 1 
meter thickness in the central region and 1.5 meter in the ends (X0 x 57 - 85) is located 
between three groups of proportional drift tubes (denoted as A, B and C stations) which are 
set up to measure its trajectory. In many other detectors there are direct measurements of the 
particle position before and after a calorimetric device. Calorimeters are usually designed to 
contain a large portion of the shower giving rise to a large number of radiation lengths. The 
particle traversing the active and non active material of the detector is multiply scattered by 
the atoms that comprise these materials. Naturally, such devices introduce errors which have 
to be accounted for in the track reconstruction. Since we do not know of any measurement 
of MS errors in such an environment, it is the aim of this article to suggest an estimate of 
the full error matrix based on the stochastic nature of the process. 

The MS process introduces small deviations into the track parameters in a random fashion 
usually referred to as stochastic. Assuming the scattering events are independent from each 
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other, and that the deviations that they introduce are Gaussian distributed; the problem 
of a particle traversing the detector material can be described by a RW. The ‘step length’ 
of the ‘walking’ particle is determined by the largest experimental measured step length 
which is yet small enough in comparison with the total distance after n steps. The errors 
on the directions (and thus on the position) are parameterized by Moliere’s theory. To 
our knowledge, the thickest material for which the measured MS angle was found to agree 
with Moliere’s theory is of the order of 0.1 of a radiation length [4]. Applying Moliere’s 
theory, one usually estimates this error by the Highland formula [5]. The RW scheme is 
consisted of breaking the particle trajectory in the scattering material into n steps, each 
step approximated by a quasi linear curve of 0.1 of a radiation length. The total trajectory 
sums up to an n-step walk. With each step is associated a random direction and thus a 
position error (displacement). These errors sum up to an end-to-end error on the position 
and the direction of the emerging particle, compared to a particle traversing the vacuum. It 
is this error that we wish to estimate. 

At a given step, i, the 4 dimensional vector vi = (z,~,L%,$) describes the local position 
and direction of the particle at that step. An n step walk is thus described by a sum over 
the local random vectors vi: 

v=-& (1) 
i=l 

where V is the 4-dimensional vector that emerges from the n-step walk. The probability 
density of finding V between V and V + d“V can be described by a Gaussian distribution: 

~(VV = (2*n;M,)2 exp[&(V- < V >)rM-‘(V- < V >)] 

where M is the end-to-end covariance error matrix given by, 

IweB =< vovfl > - < v, >< vo > (3) 

with a,@ running over the 4 indices of the local vector vi . The moments , < v, > and 
< v-v0 >, are given by the following integrals: 

<v,>= J v,p(v)d“v 
< v*vfl >= J v,vdv)d”v 

where p(v)d“v is the joint probability that the components of a single step vector, v,, fall 
in the interval v, + dv,. The integration over these correlated variables is done in the entire 
4 dimensional parameter space and is thus non trivial. 

The RW approach allows one to calculate these integrals and obtain the end-to-end 
error matrix, A&p, based on the knowledge of p(v)d”v. The problem is thus reduced to 
the parameteriaation of the local errors inflicted on each of the entries v, in a single step. 
Througout this paper we use the parameterization of the local MS errors of [l] where: 



with 8, parameterized in the Highland fashion [5]: 

CT: = F&[l. + O.O88log,,(X,)] 

The error on the position for each step is determined by equation (5) and the step length. 
Following the concept of [l] for the parameterization of the errors in a local step, we simulate 
a RW of a particle with a given momentum through a large number of radiation lengths. 
The end-to-end error matrix is estimated by the T~S of the position and direction errors of 
the particle as it emerges out of the material. 

In this study 1000 tracks are stepped, in a RW manner, through 50 and 100 of radiation 
lengths with different momenta of 5 and 40 GeV, accounting for the energy loss by a param- 
eterieation based on a fit to the data in [6]. The number of radiation lengths is chosen to 
describe the muon tracking environment in the DO detector, where about 100 - 150 radiation 
lengths separate between the central tracking to the muon chambers, and 50 - 85 radiation 
lengths are found in the toroid between the A and B,C muon modules [3]. The range of the 
momenta reflects the range of muon momenta associated with B, W/Z and top physics. 

In figures l-4 we plot the errors on the position and the direction after traversing 50 
and 100 radiation lengths both for 5 GeV and 40 GeV particles. Note that the mean error 
is consisted with zero but the rma is non zero as expected from a stochastic process. To 
check that the results are in agreement with what one expects from a mean angular error as 
parameterized in [5] we calculate the quantity: 

where 0::‘: is the T~S MS angle in the plane defined as: 

/pY 
?Yna = co8-y~l it . iT,u”) 

in/out stand for going into/out of the scattering material, and L is the shortest distance 
that a particle with the direction cosines, P, would have traversed if MS was not present. 
r?= should be comparable in magnitude to the rms position error, o=, a feature which is seen 
in our results confirming the overall approach. In table 1 we compare the quantity, a,, with 
the TTIZS position error. Some differences of X( 17-25)?” o are seen between the two quantities. 
The discrepancy may stem from the nontrivial way the local errors sum up to the end-to-end 
error, compared to the calculation of equation (6), but statistic fluctuations can not be rulled 
out. 

In figure 5 we plot the end-to end direction error, oi nW, of 5 and 40 GeV particles travers- 
ing various numbers of radiation lengths (X.:10 to 150). Overlaid is a parameterization of 
this error after the Highland formula. As in the case of the position error, where @z agrees 
with the rnza of the accumulated error, the accumulated direction error complies nicely with 
the local parameterization of the direction error [l]. This agreement provides a direct way 
to calculate the diagonal errors (M,,) of the end-to-end error matrix. 
Finally, table 2 contains the off diagonal rm8 elements (A&r) of the covariance error matrix. 

To conclude, we have used a parameterization of the MS errors associated with 0.1 of a 
radiation length , to simulate a RW type of solution for the estimation of the full end-to-end 
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Table 1: was of the position error, a=, compared with c+= of equation (6). 

x0 p %V) q*.!J Tl,i) %A~) 
WV1 [~‘I bl b4 

50 5 0.14 0.6E-04 0.343-02 0.263-02 
100 5 1.4 O.l5E-03 O.l8E-01 O.l4E-01 
50 40 0.243-02 0.9E-06 0.6E-04 0.5E-04 
100 40 O.lSE-01 O.l9E-05 0.263-03 0.20E-03 

Table 2: rms of the error matrix off-diagonal elements 

error matrix that is associated with a particle traversing a large number of radiation lengths. 
The results are in good agreement with what is expected from a direct calculation and 
yet the scheme allows to estimate the error covariance (off-diagonal elements) of the track 
parameters. The RW approach fits very well with the stochastic nature of the MS process 
and can be customized for the specific geometry of each detector. We also draw the readers 
attention to the fact that the RW solution offers an estimation for the position - direction 
covariance which Moliere’s theory does not provide. Naturally, a full detector simulation, as 
can be found in the GEANT package, would be a better software environment for a more 
detailed study. 
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Figure Captions 

Fig. 1 Distributions of the 2: (a) and y (b) p osr ran errors, and 2 (c) i (d) direction errors ‘t’ 
after an n-step RW, simulated for 5 GeV particles in a scattering material of X, = 50. 
Compare the rms of the position error to fS = 0.47 cm 

Fig. 2 Distributions of the c (a) and y (b) p osr ran errors, and i: (c) i (d) direction errors ‘t’ 
after an n-step RW, simulated for 5 GeV particles in a scattering material of X,=100. 
Compare the rms of the position error to L+% = 1.5 cm 

Fig. 3 Distributions of the a (a) and y (b) position errors, and 2 (c) $ (d) direction errors 
after an n-step RW, simulated for 40 GeV particles in a scattering material of X.=50. 
Compare the rms of the position error to Fz = 0.05 cm 

Fig. 4 Distributions of the z (a) and y (b) p osr ran errors, and i: (c) 6 (d) direction errors ‘t’ 
after an n-step RW, simulated for 40 GeV particles in a scattering material of X,=100. 
Compare the rms of the position error to cz = 0.17 cm 

Fig. 5 Direction errors (S,$) after an n-step RW, simulated for 5 (a) and 40 (b) GeV particles 
as a function of X,, overlaid is the Highland parameterization (see text). 
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